COMPOSITE ELECTRETS: MATERIALS COMBINATIONS WITH ENHANCED PROPERT

Reimund GERHARD-MULTHAUPT

University of Potsdam, Germany

- 1. Polymer-matrix micro- and nano-composites:

 Combining advantages, avoiding shortcoming
- 2. Composite materials: The connectivity conce
- 3. Composite electrets: New multi-functionalitie
 - Piezo-, pyro- and ferroelectric particles in piezo-, pyro- and ferroelectric polymer
 - Magnetostrictive particles in piezoelectric polymer (inverse effect)
 - Liquid-crystalline electro-optic particles in space-charge electret polymer
- 4. Conclusions and outlook

Surface and bulk charges (left), frozen-in and ordered dipoles (right) in a polymer electret

Dipole-density effect as basic mechanism for piezo- & pyroelectricity in polymer electrets

Applied Condensed-Matter Physics, Department of Physics, University of Potsdam

Preparation of 0-3 ceramic-polymer composites with ferroelectric or dielectric properties

(after Dias and Das-Gupta 1999)

Model of a composite with spherical ceramic inclusions embedded in a polymer matrix (after Furukawa and Fukada 1976 as well as Dias and Das-Gupta 1999)

Schematic views of connectivity patterns in two-phase composites

Applied Condensed-Matter Physics, Department of Physics, University of Potsdam

Connectivities and typical examples of practical composites (not all of them electrets)

Index	Matrix	Filler	Examples	Comments
0-0	particles	particles	sintered powders	both phases only particles
0-3	continuous	particles	concrete, paint, etc.	particles in matrix
1-1	rod-like	rod-like	fibre bundle	e.g. two types of fibres
1-3	continuous	fibres/rods	fibre reinforcement	rod length $pprox$ thickness
2-2	layers	layers	sandwich panel	layers continuous
2-3	continuous	2-D grid	reinforced concrete	2-D tensional strength
3-3	continuous	continuous	"filled sponge"	interwoven networks

Photorefraktivität: Optische und elektrische Gitter

Institut für Festkörperphysik der Universität Potsdam

(after R. Kacprzyk et al., J. Electrostat. 39 (1997))

Response:
$$r_{33}=-\sigma rac{arepsilon_1 arepsilon_2 d_1 d_2}{(arepsilon_2 d_1 + arepsilon_1 d_2)^2} \Big(rac{1}{E_2} - rac{1}{E_1}\Big)$$

with the charge density σ and the thicknesses d_i , relative permittivities ε_i and elastic (Young's) moduli E_i of the hard (1) and soft (2) layers

Applied Condensed-Matter Physics, Univ. of Potsdam

Double-layer electret transducer with charged PTFE film and non-woven PP fabric (after R. Kacprzyk, A. Dobrucki, and J. B. Gajewski, *J. Electrostatics* **39**, 33–40 (1997))

Two-layer arrangements with (D) 40 μ m and (E) 80 μ m thick porous PTFE films

Film sequence in stack	$\sigma \; ({ m mC/m^2})$	r_{33} (pC/N)
D 15μm "HARD"	1.2	11
40μm "SOFT"	2.4	18
	4.8	30
E 15µm "HARD"	1.2	5.2
80μm "SOFT"	2.4	7
	4.8	15.5

Twice the soft-layer thickness \Rightarrow Half the response

Applied Condensed-Matter Physics, Univ. of Potsdam

Composite with poled particles and/or poled matrix

(after Ploss $et \ alii \ 2000$)

Electric polarization & magnetoelectric coefficient in a 2-layer Terfenol/PVDF composite (after Mori and Wuttig 2002)

Applied Condensed-Matter Physics, Department of Physics, University of Potsdam

Field- and composition-dependent magnetoelectric coefficients of Terfenol/PZT/PVDF composites

(after Nan et alii 2002)

Schematic view of a polymer-dispersed liquid crystal

(after Kitzerow 1994)

Electret (memory) effect in the polymer matrix of polymer-dispersed liquid crystals

(after Cupelli, Nicoletta, de Filpo, and Chidichimo 2001)

+- = ion impurities

5 = disordered polymer chains
| = aligned polymer chains
| = Liquid Crystal

MEMORY STATE

NO MEMORY STATE